不确定性在未来预测中起关键作用。未来是不确定的。这意味着可能有很多可能的未来。未来的预测方法应涵盖坚固的全部可能性。在自动驾驶中,涵盖预测部分中的多种模式对于做出安全至关重要的决策至关重要。尽管近年来计算机视觉系统已大大提高,但如今的未来预测仍然很困难。几个示例是未来的不确定性,全面理解的要求以及嘈杂的输出空间。在本论文中,我们通过以随机方式明确地对运动进行建模并学习潜在空间中的时间动态,从而提出了解决这些挑战的解决方案。
translated by 谷歌翻译
预测场景中代理的未来位置是自动驾驶中的一个重要问题。近年来,在代表现场及其代理商方面取得了重大进展。代理与场景和彼此之间的相互作用通常由图神经网络建模。但是,图形结构主要是静态的,无法表示高度动态场景中的时间变化。在这项工作中,我们提出了一个时间图表示,以更好地捕获流量场景中的动态。我们用两种类型的内存模块补充表示形式。一个专注于感兴趣的代理,另一个专注于整个场景。这使我们能够学习暂时意识的表示,即使对多个未来进行简单回归,也可以取得良好的结果。当与目标条件预测结合使用时,我们会显示出更好的结果,可以在Argoverse基准中达到最先进的性能。
translated by 谷歌翻译
在自动驾驶中,在车辆周围所有代理的位置和运动方面预测未来是计划的关键要求。最近,通过将多个相机感知的丰富感觉信息融合到紧凑的鸟类视图表示以执行预测的情况下,已经出现了一种新的感知和预测的联合表述。但是,由于多个合理的预测,未来预测的质量会随着时间的推移而降低到更长的时间范围。在这项工作中,我们通过随机时间模型解决了未来预测中的这种固有的不确定性。我们的模型通过在每个时间步骤中通过随机残差更新来学习潜在空间中的时间动态。通过在每个时间步骤中从学习的分布中取样,我们获得了与以前的工作相比更准确的未来预测,尤其是在现场的空间上扩展两个区域,并在更长的时间范围内进行时间范围。尽管每个时间步骤进行了单独的处理,但我们的模型仍然通过解耦动态学习和未来预测的产生而有效。
translated by 谷歌翻译
在这项研究中,我们介绍了机器感知的措施,灵感来自于人类感知的概念(JND)的概念。基于该措施,我们提出了一种对抗性图像生成算法,其通过添加剂噪声迭代地扭曲图像,直到模型通过输出错误标签来检测图像中的变化。添加到原始图像的噪声被定义为模型成本函数的梯度。定义了一种新的成本函数,以明确地最小化应用于输入图像的扰动量,同时强制执行对抗和输入图像之间的感知相似性。为此目的,经过众所周知的总变化和有界范围术语来规范成本函数,以满足对抗图像的自然外观。我们评估我们的算法在CiFar10,ImageNet和MS Coco Datasets上定性和定量地生成的对抗性图像。我们对图像分类和对象检测任务的实验表明,通过我们的JND方法产生的对抗性图像在欺骗识别/检测模型以及与由最先进的方法产生的图像相比,扰动扰动,即, FGV,FSGM和Deepfool方法。
translated by 谷歌翻译
Data-driven models such as neural networks are being applied more and more to safety-critical applications, such as the modeling and control of cyber-physical systems. Despite the flexibility of the approach, there are still concerns about the safety of these models in this context, as well as the need for large amounts of potentially expensive data. In particular, when long-term predictions are needed or frequent measurements are not available, the open-loop stability of the model becomes important. However, it is difficult to make such guarantees for complex black-box models such as neural networks, and prior work has shown that model stability is indeed an issue. In this work, we consider an aluminum extraction process where measurements of the internal state of the reactor are time-consuming and expensive. We model the process using neural networks and investigate the role of including skip connections in the network architecture as well as using l1 regularization to induce sparse connection weights. We demonstrate that these measures can greatly improve both the accuracy and the stability of the models for datasets of varying sizes.
translated by 谷歌翻译
Ranking intuitionistic fuzzy sets with distance based ranking methods requires to calculate the distance between intuitionistic fuzzy set and a reference point which is known to have either maximum (positive ideal solution) or minimum (negative ideal solution) value. These group of approaches assume that as the distance of an intuitionistic fuzzy set to the reference point is decreases, the similarity of intuitionistic fuzzy set with that point increases. This is a misconception because an intuitionistic fuzzy set which has the shortest distance to positive ideal solution does not have to be the furthest from negative ideal solution for all circumstances when the distance function is nonlinear. This paper gives a mathematical proof of why this assumption is not valid for any of the non-linear distance functions and suggests a hypervolume based ranking approach as an alternative to distance based ranking. In addition, the suggested ranking approach is extended as a new multicriteria decision making method, HyperVolume based ASsessment (HVAS). HVAS is applied for multicriteria assessment of Turkey's energy alternatives. Results are compared with three well known distance based multicriteria decision making methods (TOPSIS, VIKOR, and CODAS).
translated by 谷歌翻译
A digital twin is defined as a virtual representation of a physical asset enabled through data and simulators for real-time prediction, optimization, monitoring, controlling, and improved decision-making. Unfortunately, the term remains vague and says little about its capability. Recently, the concept of capability level has been introduced to address this issue. Based on its capability, the concept states that a digital twin can be categorized on a scale from zero to five, referred to as standalone, descriptive, diagnostic, predictive, prescriptive, and autonomous, respectively. The current work introduces the concept in the context of the built environment. It demonstrates the concept by using a modern house as a use case. The house is equipped with an array of sensors that collect timeseries data regarding the internal state of the house. Together with physics-based and data-driven models, these data are used to develop digital twins at different capability levels demonstrated in virtual reality. The work, in addition to presenting a blueprint for developing digital twins, also provided future research directions to enhance the technology.
translated by 谷歌翻译
A large portion of today's world population suffer from vision impairments and wear prescription eyeglasses. However, eyeglasses causes additional bulk and discomfort when used with augmented and virtual reality headsets, thereby negatively impacting the viewer's visual experience. In this work, we remedy the usage of prescription eyeglasses in Virtual Reality (VR) headsets by shifting the optical complexity completely into software and propose a prescription-aware rendering approach for providing sharper and immersive VR imagery. To this end, we develop a differentiable display and visual perception model encapsulating display-specific parameters, color and visual acuity of human visual system and the user-specific refractive errors. Using this differentiable visual perception model, we optimize the rendered imagery in the display using stochastic gradient-descent solvers. This way, we provide prescription glasses-free sharper images for a person with vision impairments. We evaluate our approach on various displays, including desktops and VR headsets, and show significant quality and contrast improvements for users with vision impairments.
translated by 谷歌翻译
Deep Ensemble Convolutional Neural Networks has become a methodology of choice for analyzing medical images with a diagnostic performance comparable to a physician, including the diagnosis of Diabetic Retinopathy. However, commonly used techniques are deterministic and are therefore unable to provide any estimate of predictive uncertainty. Quantifying model uncertainty is crucial for reducing the risk of misdiagnosis. A reliable architecture should be well-calibrated to avoid over-confident predictions. To address this, we propose a UATTA-ENS: Uncertainty-Aware Test-Time Augmented Ensemble Technique for 5 Class PIRC Diabetic Retinopathy Classification to produce reliable and well-calibrated predictions.
translated by 谷歌翻译
Digital sensors can lead to noisy results under many circumstances. To be able to remove the undesired noise from images, proper noise modeling and an accurate noise parameter estimation is crucial. In this project, we use a Poisson-Gaussian noise model for the raw-images captured by the sensor, as it fits the physical characteristics of the sensor closely. Moreover, we limit ourselves to the case where observed (noisy), and ground-truth (noise-free) image pairs are available. Using such pairs is beneficial for the noise estimation and is not widely studied in literature. Based on this model, we derive the theoretical maximum likelihood solution, discuss its practical implementation and optimization. Further, we propose two algorithms based on variance and cumulant statistics. Finally, we compare the results of our methods with two different approaches, a CNN we trained ourselves, and another one taken from literature. The comparison between all these methods shows that our algorithms outperform the others in terms of MSE and have good additional properties.
translated by 谷歌翻译